Finite element analysis of head-neck kinematics during motor vehicle accidents: analysis in multiple planes.

نویسندگان

  • Ee Chon Teo
  • Qing Hang Zhang
  • Russel C Huang
چکیده

In this study, a detailed three-dimensional head-neck (C0-C7) finite element (FE) model developed previously based on the actual geometry of a human cadaver specimen was used. Five simulation analyses were performed to investigate the kinematic responses of the head-neck complex under rear-end, front, side, rear- and front-side impacts. Under rear-end and front impacts, it was predicted that the global and intervertebral rotations of the head-neck in the sagittal plane displayed nearly symmetric curvatures about the frontal plane. The primary sagittal rotational angles of the neck under direct front and rear-end impact conditions were higher than the primary frontal rotational angles under other side impact conditions. The analysis predicted early S-shaped and subsequent C-shaped curvatures of the head-neck complex in the sagittal plane under front and rear-end impact, and in the frontal plane under side impact. The head-neck complex flexed laterally in one direction with peak magnitude of larger than 22 degrees and a duration of about 130 ms before flexing in the opposite direction under both side and rear-side impact, compared to the corresponding values of about 15 degrees and 105 ms under front-side impact. The C0-C7 FE model has reasonably predicted the effects of impact direction in the primary sagittal and frontal segmental motion and curvatures of the head-neck complex under various impact conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Occupant Head Injury during Automotive Interior Head Impact Using FEM Approach

A significant fraction of fatalities involving passengers in automobile accidents is due to severe Head Injury. Head impact safety which in turn is the occupant safety is a significant consideration particularly in the design of Passenger Vehicles. During the rollover of SUV the head comes in contact with the parts such as the B-Pillar so in order to evaluate the occupant safety during rollover...

متن کامل

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

متن کامل

تعیین عوامل مؤثر بر خطر فوت ناشی از تصادفات جاده‌ای استان مازندران با استفاده از مدل مخاطرات متناسب کاکس

Background and purpose: Nowadays one of the major problems around the world is traffic accidents and its consequences. Annually, 25 to 27 thousands of people lose their lives in motor vehicle accidents in Iran. This study aimed to investigate the effective factors on death caused by road accidents. Materials and methods: Information of deceased persons during the years 2009 to 2000 in suburban...

متن کامل

Optimization of Specific Power of Surface Mounted Axial Flux Permanent Magnet Brushless DC Motor for Electrical Vehicle Application

Optimization of specific power of axial flux permanent magnet brushless DC (PMBLDC) motor based on genetic algorithm optimization technique for an electric vehicle application is presented. Double rotor sandwiched stator topology of axial flux permanent magnet brushless DC motor is selected considering its best suitability in electric vehicle applications. Rating of electric motor is determined...

متن کامل

Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM

Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2007